skip to main content


Search for: All records

Creators/Authors contains: "Xue, Fanghui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It has been shown by many researchers that transformers perform as well as convolutional neural networks in many computer vision tasks. Meanwhile, the large computational costs of its attention module hinder further studies and applications on edge devices. Some pruning methods have been developed to construct efficient vision transformers, but most of them have considered image classification tasks only. Inspired by these results, we propose SiDT, a method for pruning vision transformer backbones on more complicated vision tasks like object detection, based on the search of transformer dimensions. Experiments on CIFAR-100 and COCO datasets show that the backbones with 20% or 40% dimensions/parameters pruned can have similar or even better performance than the unpruned models. Moreover, we have also provided the complexity analysis and comparisons with the previous pruning methods. 
    more » « less
  2. Multi-resolution paths and multi-scale feature representation are key elements of semantic segmentation networks. We develop two techniques for efficient networks based on the recent FasterSeg network architecture. One is to use a state-of-the-art high resolution network (e.g. HRNet) as a teacher to distill a light weight student network. Due to dissimilar structures in the teacher and student networks, distillation is not effective to be carried out directly in a standard way. To solve this problem, we introduce a tutor network with an added high resolution path to help distill a student network which improves FasterSeg student while maintaining its parameter/FLOPs counts. The other finding is to replace standard bilinear interpolation in the upscaling module of FasterSeg student net by a depth-wise separable convolution and a Pixel Shuffle module which leads to 1.9% (1.4%) mIoU improvements on low (high) input image sizes without increasing model size. A combination of these techniques will be pursued in future works. 
    more » « less
  3. We propose a multistage differentiable method to select convolutional channels and construct light neural networks from a heavy network for inference on a subset of a big data set. The selection proceeds backward in layers and utilizes sparse penalty to diversify channel scores. The resulting light network gains sizable accuracy over the baseline heavy network. 
    more » « less